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NAVIGATING THE DATA LABYRINTH:

Applications of Some Advanced Statistical Analysis in
Atmospheric Physics

PREAMBLE

It is a great honour and privilege for me to be able to present for academic digestion,
some of the elements of the discipline that fascinates me. I am, therefore, immensely
grateful to the Almighty Allah for the opportunity to stand before this audience to
give this lecture.

INTRODUCTION

Computers have changed the way statistics is learned and taught. Often, researchers
are interested only in the “results” of their “analyses” and do not care about how the
results are obtained. With the advancement in the field of information and
communication technologies, it has become easier to capture huge amounts of data.
However, the sheer amount of data makes it virtually impossible to comprehend them
in their raw form. The purpose of this presentation is to discuss some applications of
some advanced statistics analysis that are very useful in the analysis of data in
atmospheric physics.

Some descriptive statistics that are normally used to summarize and present data in a
meaningful manner so that the underlying information is easily understood are
discussed in section 2. In the section mean, median, mode, skewness and kurtosis are
discussed. The last two are discussed in a greater detail due to their importance. This
is attributable to the fact that they are not commonly used and even if used, are not
normally properly interpreted.

In Section 3, time series analyses are discussed. The reason for discussing it is
because the way many textbooks give guides on how to use them makes it very
difficult for a non-statistician to understand. Some of the steps include: how to check
the data for test of stationarity using AutoCorrelation Function (ACF) and Partial
AutoCorrelation Function (PACF) and how to take seasonal differencing and
non-seasonal differencing. In this section, some meteorological data are analysed
using the Expert Modeler of SPSS 16.0, although SPSS 20.0 IBM version also has the
Expert Modeler. The advantage of this approach is that the software optimizes all
optimizable parameters and finally gives the most appropriate model(s) as it displays
the model(s) as either, ARIMA or Exponential Smoothing Model.



In Section 4, analyses are made on how to use Empirical Orthogonal Functions
(EOFs). In this case the data are converted to matrix form, and when inputted in the
software, the correlation/covariance matrix is obtained. The software uses the
correlation/covariance matrix to determine the eigenvalues and eigenvectors. Usually,
these values represent the types and number of modes of any system. The
metrological data used in section 3 is used here and SPSS 16.0 is also used, although
SPSS 20.0 IBM version can also be used.

Finally, the focal point of this presentation is on how SPSS is used as a black box. In
the process, the discussions of the theories are limited to the necessary and simple
terms of significance. The manner by which outputs are interpreted using examples is
also made evident.

UNDERSTANDING AND INTERPRETING PARTICLE SIZE
DISTRIBUTION USING DESCRIPTIVE STATISTICS

Introduction

It is typically noted in introductory statistics courses that distributions can be
characterized in terms of central tendency, variability, and shape. In atmospheric
physics, performing a particle size analysis is the best way to answer the question:
What size are those particles? Once the analysis is complete the user has a variety of
approaches for reporting the results. The need to study these concepts arises from the
fact that the measures of central tendency and dispersion alone fail to describe a
distribution completely. It is possible to have frequency distributions which differ
widely in their nature and composition and yet may have the same central tendency
and dispersion. Thus, there is the need to supplement the measures of central
tendency and dispersion. Some of the supplements to be discussed are the numerical
methods of the measures of shapes (skewness and kurtosis).

The purpose of this section is to clarify the meanings of kurtosis and skewness and to
show why and how they can be used in atmospheric physics. The link between
skewness and kurtosis, and Angstrom constants are been examined and the necessity
of their joint use is being justified.

MEASURES OF CENTRAL TENDENCY

Measures of central tendency provide information about a representative value of the

data set. Arithmetic mean, simply called the mean, the median, and the mode are the

most common measures of central tendency.

(1) Mean or average is the sum of the values of a variable divided by the number
of observations.



(i1) Median is a point in the data set above and below which half of the cases fall.
Median values are defined as the value where half of the population resides
above this point, and half resides below this point.

(ii1))  Mode is the most frequently occurring value in a data set. The mode is the
peak of the frequency distribution, or it may be easier to visualize it as the
highest peak seen in the distribution. The mode represents the particle size (or
size range) most commonly found in the distribution.

For symmetric distributions, such as the one shown in Figure 2.1, all central values
are equivalent: mean = median = mode. The importance of these parameters in
atmospheric physics is what is going to be presented. For non-symmetric distributions
the mean, the median and the mode will be the three different values shown in Figure
2.1.

MEASURES OF SHAPES: SKEWNESS AND KURTOSIS

A histogram can give a general idea of the shape of a distribution, but two numerical
measures of shape give a more precise evaluation: skewness tells you the amount and
direction of skew (departure from horizontal symmetry), and kurtosis tells you how
tall and sharp the central peak is, relative to a standard bell curve ( vertical measures).

Skewness

Besides mean, median, and mode, it is also important to know if the given
distribution is symmetric or not. A distribution is said to be skewed if the
observations above and below the mean are not symmetrically distributed. A zero
value of skewness implies a symmetric distribution. The distribution is positively
skewed when the mean is greater than the median and negatively skewed when the
mean is less than the median. A textbook discussing the concepts would typically
begin by showing the relative positions of the mean, median, and mode in smooth
population probability density functions, as illustrated in Figure 2.1.

Figure 2.2 shows how histograms can be used to give the general idea of the different
types of size distributions.
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From Figures 2.1 and 2.2, it is observable that for negatively skewed (Skewed left),
there are long tails and distortions that are caused by extremely small values which
pull the mean downward so that it is less than the median. At the centre, there are
symmetric distributions in which the mean, the median and the mode are the equal.
By the right hand side of the figures there are long tails to the right caused by
extremely large values which pull the mean upward so that it is greater than the
median.



Table 2.1: Description of different types of skewness

Skewness Distribution shape Calculated Value
Positive Tail to the right, values extend further to the | Mean>Median>Mode

right but concentrated in the left
Zero Bell shaped or symmetrical Mean=Median=Mode
Negative Tail to the left, values extend further to the Mean<Median<Mode
left but concentrated in the right.

Kurtosis

If a distribution is symmetric, the next question is about the central peak: Is it high
and sharp, or short and broad? You can get some idea of this from the histogram, but
a numerical measure is more precise. Kurtosis is a measure of how peaked or flat a
distribution is or is the degree of peakedness of a distribution, that is, whether it is of
peaked or flat relative to a normal distribution (its departure from the vertical with
respect to the normal distribution). The reference standard is a normal distribution,
which has a kurtosis of 3. Often, excess kurtosis is presented instead of kurtosis,
where excess kurtosis is simply “kurtosis — 3”. For example, the “kurtosis” reported
by Excel and SPSS is actually the excess kurtosis.

Data sets with high kurtosis tend to have a distinct peak near the mean, decline rather
rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top near
the mean rather than a sharp peak.

g .
§ Leptokurtic
2 Mesokurtic
=
Platykurtic
X
0

Figure 2.3: Meso, Lepto, and Platykurtic Distributions



Table 2.2: Description of different types of kurtosis

Term Distribution Kurtosis Excess Kurtosis
shape
Leptokurtic Peaked Greater than 3 Greater than 0
Mesokurtic Normal 3 0
Platykurtic Flat Less than 3 Less than 0

EXAMPLE: ANALYSIS OF ATMOSPHERIC AEROSOLS SIZE
DISTRIBUTIONS USING SKEWNESS, KURTOSIS AND ANGSTROM
CONSTANTS

Introduction

Aerosol particles result from different sources and processes. At any place in the
atmosphere there exists a mixture of particles of different origin. To describe the wide
range of possible compositions, the aerosol particles are modelled as components
(Deepak and Gerber, 1983), each of them meant to be representative for a certain
origin, that is, an internal mixture of all chemical substances that have a similar origin.
These components may be externally mixed to form aerosol types. External mixture
means that there is no physical or chemical interaction between particles of different
components.

The aim of this presentation is to compare skewness and kurtosis with Angstrom
exponents (Angstrom’s turbidity coefficient  and the wavelength exponent o) in the
analysis of the atmospheric aerosols particles size distributions. In atmospheric
physics, Angstrom exponents are used as measures to determine the aerosols size
distributions. Higher values, usually greater than 1, represents the dominance of
fine/accumulation modes over coarse modes particles, while lower down to negative
indicates the dominance of coarse mode particles over fine/accumulated mode
particles. The atmospheric aerosols to be used are desert and urban aerosols. These
aerosols are extracted from Optical Properties of Aerosols and Clouds (OPAC) 4.0, at
the relative humidities (RHs) of 0, 50, 70, 80, 90, 95, 98, and 99% at wavelengths of
0.40 to 0.8um.

Methodology

The aerosols models types extracted from OPAC 4.0, at the relative humidities of 0,
50, 70, 80, 90, 95, 98, and 99% at wavelengths of 0.4 to 0.8um are Desert and Urban
aerosols. The software mixes the components externally to form the aerosols types.



Table 2.3: Compositions of aerosols types at 0% RH (Hess et. al., 1998).

Aerosols | Aerosols Number Number Mix | Volume Rinoa (dry),
Models Components | Concent. (cm™) Ratio Mix Ratio (um):
Waso 2000 0.8695 0.01842 0.0212
Desert m%nn 269.5 0.1172 0.03474 0.0700
mian 30.5 0.01326 0.7442 0.3900
micn 0.142 0.00006174 0.2026 1.9000
inso 1.5 0.000009494 | 0.3832 0.4710
Urban | waso 28000 0.1772 0.4493 0.0212
soot 130000 0.8228 0.1675 0.0118

The inso represents the water-insoluble part of aerosol particles and consists mostly
of soil particles with a certain amount of organic material. The waso represents the
water-soluble part of aerosol particles that originates from gas to particle conversion
and consists of various kinds of sulfates, nitrates, and other, also organic,
water-soluble substances. Thus, it contains more than only the sulfate aerosol that is
often used to describe anthropogenic aerosol. The soot component is used to represent
absorbing black carbon. Carbon is not soluble in water and, therefore, the particles are
assumed not to grow with increasing relative humidity. Mineral aerosol or desert dust
is produced in arid regions. It consists of a mixture of quartz and clay minerals and is
modelled with three modes to allow and consider increasing relative amount of large
particles for increasing turbidity. mineral (nuclei mode, nonspherical) minn, mineral
(accumulation mode, nonspherical) mian, mineral (coarse mode, nonspherical) micn
are mineral aerosols or desert dusts that are produced in arid regions.

With rising humidity, the aerosol particles are more and more soaked with water from
the surrounding humid air and swell. The increase in particle size reduces the
visibility. Quantitatively, the variation of the size distribution of the aerosol particles
with relative humidity has to be taken into account (Kasten, 1968). An objective
measure of visibility is the standard visual range or meteorological range
(Koschmieder, 1926)

3.912
Text()

V@) = (2.1)

which is meteorological range refers to the visual range of a black object seen against
the horizon sky by a standard observer having a contrast threshold 0.02 ( Middleton,
1952). The visual extinction coefficient o,,,(A) is a measure of the light scattering
and absorbing properties of the atmosphere along the line of sight.



Variation of the extinction coefficient with wavelength can be presented in the form
of an inverse power law function (Angstrom, 1929); that is the spectral dependence of
extinction by particles may be approximated as an inverse power law relationship:

Oext(A) = BA™¢ (2.2)

where a and B are known as Angstrom parameters . The index a is the wavelength
exponent or Angstrom coefficient;  is the turbidity coefficient representing the
amount of aerosols present in the atmosphere in the vertical direction or the total
aerosol loading in the atmosphere (Shaw et. al., 1973; Satheesh and Moorthy, 1997).
The Angstrom exponent depends on the size distribution of aerosols and is a measure
of the ratio of the concentration of coarse to accumulation mode aerosols, with higher
values representing increased abundance of accumulation mode aerosols. Higher and
positive values of a indicate dominance of fine/accumulation mode aerosols in the
aerosol size spectrum, whereas lower and negative values of a indicate the dominance
of coarse mode aerosol particles (Moorthy et. al., 2001; Singh et. al., 2005).

One of the most important variables for the aerosol size distribution is the effective
radius, which can be calculated using the Junge size distribution n(r) (Junge, 1963):

20 = (@) o+ (2.3)

n(r) =
where N is the number density, r is the radius and C(z) is a factor proportional to the
aerosol concentration, which is dependent on the altitude z (Biggar et. al., 1990).
Through the relationship v=a+2(Igbal, 1983; Bruegge et. al., 1992), the exponent v
can be obtained from the value of a, which can be estimated from equation (2.2).

In terms of individuals aerosols size distributions, lognormal distributions (cf.,e.g.,
Deepak and Gerber, 1983) are applied for each component i:

dN;(r) N;(r) loyr logrmoan; (r)) 2.4)
dr _\/Erlogailnm p logo; )

where rmodn,i 1s the mode radius, o; measures the width of the distribution, and N; is
the total particle number density of the component i in particles per cubic centimetre.
Substituting equation (2.2) into (2.1), the following equation is obtained also as a
direct power law function

vy =322 e (2.5)
Equation (2.5) can also be written as:
In(72) == In(B) + aIn(A) (2.6)



Measurements indicate that the Angstrom exponent varies with wavelength, and a
more precise empirical relationship between aerosol extinction and wavelength is
obtained with a 2nd-order polynomial (King and Byrne, 1976; Eck et. al., 1999; Eck.
et. al., 2001a, b; Kaufman , 1993; O’Neill et al., 2001, 2003; Galadanci and Tijjani,
2014; Tijjani et. al., 2013; Tijjani et. al., 2014). This implies that it can also be
applicable to visibility:

In(72) == () + azln(N) + az(In(1)? 2.7)
Here, the coefficient a2 accounts for a* curvature” often observed in sunphotometry
measurements. The spectral curvature of the Angstrom exponent contains useful
information about the aerosol size distribution (King and Byrne, 1976; Eck et. al,
1999; Eck. et. al, 2001a, b; Kaufman, 1993; O’Neill et. al., 2001, 2003). Some
authors have noted that the curvature is also an additional indicator of the aerosol
particle size, with negative curvature indicating aerosol size distributions dominated
by the fine mode or monomodel distribution and positive curvature indicating size
distributions with a significant coarse mode contribution or bimodal size distribution
(Kaufman, 1993; Eck et. al., 1999; Eck. et. al., 2001b).

Results and Discussions
The results, the analysis and observations of the data extracted from OPAC 4.0, is
now presented.
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Figure 2.4: The plots of visibilities with wavelengths for Desert aerosols



From the plots of figure 2.4, it can be seen that the visibility increases with the
increase in wavelength, but decreases with the increase in RH.
Table 2.2: Results of the regression analysis of equation (2.6) for Desert aerosols

RH (%) | R? Sig. o Sig. B Sig.

0 0.9963 8.87E-10 | 0.0892 8.87E-10 0.0324 1.59E-22
50 0.9965 7.43E-10 | 0.1332 7.43E-10 0.0328 2.25E-21
70 0.9970 4.22E-10 | 0.1580 4.22E-10 0.0330 4.27E-21
80 0.9974 2.59E-10 | 0.1811 2.59E-10 0.0333 6.95E-21
90 0.9988 1.80E-11 0.2323 1.80E-11 0.0342 2.89E-21
95 0.9995 5.75E-13 0.2941 5.75E-13 0.0358 5.29E-22
98 0.9998 2.44E-14 | 0.3785 2.44E-14 0.0395 1.62E-22
99 0.9991 7.63E-12 0.4269 7.63E-12 0.0436 1.46E-19

Based on the contents of Table 2.2 and by observing the values of R? and the
significances of all the coefficients, it can be said that the data fitted the equation
model very well (equation 2.6). The increase of a with RH signifies the increase in
the dominance of fine/accumulation modes over coarse modes particles. But since it
is less than 1 it shows that coarse mode particles are still more dominant. And 3
(turbidity coefficient) increases with the increase in RH, and this also contributes to
the decrease in visibility with RH.

Table 2.3: Results of the regression analysis of equation (2.7) for Desert aerosols

RH
(%) | R? Sig. o Sig. o2 Sig. B Sig.

0 0.9998 | 5.96E-12 | 0.0590 | 8.17E-07 | -0.0270 | 3.78E-05 | 0.0326 | 6.03E-21
50 0.9998 | 3.71E-12 | 0.0891 | 4.78E-07 | -0.0391 | 2.74E-05 | 0.0331 | 4.26E-20
70 0.9999 | 1.15E-12 | 0.1096 | 1.21E-07 | -0.0429 | 1.38E-05 | 0.0334 | 3.73E-20
80 0.9999 | 1.42E-12 | 0.1296 | 1.23E-07 | -0.0457 | 2.58E-05 | 0.0337 | 1.06E-19
90 0.9999 | 2.48E-13 | 0.1874 | 1.06E-08 | -0.0399 | 4.45E-05 | 0.0345 | 8.58E-20
95 0.9999 | 5.61E-13 | 0.2618 | 1.32E-08 | -0.0286 | 0.00203 0.0360 | 8.60E-19
98 0.9999 | 5.20E-13 | 0.4004 | 4.35E-09 | 0.0195 | 0.03222 0.0393 | 4.23E-18
99 0.9999 | 3.08E-13 | 0.4992 | 1.42E-09 | 0.0641 1.16E-04 | 0.0428 | 6.09E-18

Considering Table 2.3 and by observing the values of R? and the significances of all
the coefficients, it can be said that the data fitted the equation model very well. The
increase of o> with RH signifies the increase in the dominance of fine/accumulation
modes over coarse modes particles. The negative sign of o 2, shows that this is
monomodal and is dominated by coarse mode particles (at RH of 0 to 95%). But at 98
and 99% RH, it becomes positive. This is where the bimodal distribution appears. But
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B (turbidity coefficient) increases with the increase in RH, and this also contributes to
the decrease in visibility with RH.

Table 2.4: The skewness and kurtosis of Desert aerosols

Vis00 | Vis50 Vis70 Vis80 Vis90 Vis95 Vis98 Vis99

Mean 29.408 | 28.437 | 27.854 | 27.255 | 25.876 | 23.945 20.753 | 18.354
Median 29.502 | 28.576 28.003 27.414 | 26.045 | 24.104 20.864 | 18.418
Mode 28.368 | 26.942 26.132 | 25.337 | 23.595 | 21.330 17.945 | 15.617
Skewness | -0.476 | -0.458 -0.437 -0.417 -0.350 -0.284 -0.165 -0.088
Kurtosis -0.878 | -0.889 -0.922 -0.939 -1.042 -1.106 -1.187 -1.210

As indicated by Table 2.4 and by observing the decrease in the values of mean,
median and mode, it can be said that there is a decrease in the number of particles as
the relative humidity increased. By observing the skewness, it can be seen that they
are all negative (negatively skewed), this is an indication of the dominance of coarse
mode particles compared to fine mode particles. The decrease in magnitude with RH
shows that larger particles are decreasing more in number than the fine particles.
From the kurtosis, it can be said that it is negative (platykurtic), and this shows that
the distribution is below the normal distribution. The increase in the magnitude with
the increase in RH reflects the decrease in the particles as they are removed from the
atmosphere.

Comparing o and the skewness they both show the dominance of coarse mode
particles. This is because a is less than 1.0 and the skewness is negative. From the
sign of o2 (negative), it shows that the aerosols have monomodel distribution, and the
signs of the kurtosis (platykurtic) show the dominance of coarse mode particle
distribution.

11
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Figure 2.5: The plots of Visibilities with wavelengths for Urban aerosols

From the plots of figure 2.5, it can be seen that the visibility increases with the
increase in wavelength, but decreases with the increase in RH.

Table 2.5: Results of the regression analysis of equation (2.6) for Urban aerosols

RH (%) | R? Sig. o Sig. B Sig.

0 0.9990 | 9.17E-12 1.373 | 9.17E-12 0.0216 | 1.52E-16
50 0.9984 | 4.33E-11 1.379 | 4.33E-11 0.0291 1.31E-15
70 0.9982 | 7.71E-11 1.369 | 7.71E-11 0.0341 3.05E-15
80 0.9978 1.39E-10 1.353 | 1.39E-10 0.0396 | 6.97E-15
90 0.9972 | 3.32E-10 1.309 | 3.32E-10 0.0540 | 2.68E-14
95 0.9964 | 8.43E-10 1.239 | 8.43E-10 0.0785 1.21E-13
98 0.9951 2.47E-09 1.123 | 2.47E-09 0.1332 | 9.09E-13
99 0.9939 | 5.07E-09 1.036 | 5.07E-09 0.1906 | 4.22E-12

Through the keen observation of table 2.5 and by observing the values of R? and the
significances of all the coefficients, it can be said that the data fitted the equation
model very well. The increase of oo with RH signifies the increase in the dominance
of fine/accumulation modes over coarse modes particles. But 3 (turbidity coefficient)
increases with the increase in RH, and this also contributes to the decrease in
visibility with RH.
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Table 2.6: Results of the regression analysis of equation (2.7) for Urban aerosols

RH
(%) | R2 Sig. o1 Sig. o2 Sig. B Sig.

0 0.9999 | 1.62E-13 | 1.6137 | 7.24E-10 | 0.2136 | 5.18E-05 | 0.0204 | 9.98E-16
50 1.0000 | 5.16E-14 | 1.6856 | 1.83E-10 | 0.2721 4.31E-06 | 0.0271 5.13E-16
70 1.0000 | 3.96E-14 | 1.7011 | 1.27E-10 | 0.2943 2.01E-06 | 0.0315 4.88E-16
80 1.0000 | 3.37E-14 | 1.7104 | 9.79E-11 | 0.3170 1.03E-06 | 0.0364 | 5.01E-16
90 1.0000 | 2.32E-14 | 1.7010 | 5.70E-11 | 0.3480 | 3.36E-07 | 0.0492 | 5.01E-16
95 1.0000 | 1.12E-14 | 1.6649 | 2.26E-11 | 0.3775 | 7.29E-08 | 0.0710 | 3.80E-16
98 1.0000 | 7.50E-15 | 1.5729 | 1.19E-11 | 0.3993 | 1.95E-08 | 0.1196 | 5.30E-16
99 1.0000 | 7.41E-15 | 1.4975 | 9.77E-12 | 0.4090 1.04E-08 | 0.1708 9.78E-16

From Table 2.6, by observing the values of R? and the significances of all the
coefficients, it can be said that the data fitted the equation model very well. The
increase of o1 with RH (0 to 80%) signifies the increase in the dominance of
fine/accumulation modes over coarse modes particles. But its decrease from 80 to
99%, signifies increase in the concentrations of coarse mode particles as the fine
particles are acting as cloud condensation nuclei. From the sign of a2, it can be seen
that it is positive and this shows that it is a bimodal type of particle distributions with
the dominance of fine mode particles. The increase in the values of a2 with RH
shows the increase in the concentrations of coarse as the fine particles are becoming
bigger as they act as cloud condensation nuclei. But B (turbidity coefficient) increases
with the increase in RH and this also contributes to the decrease in visibility with RH.

Table 2.7: The skewness and kurtosiss of Urban aerosols

Vis00 | Vis50 | Vis70 | Vis80 | Vis90 Vis95 | Vis98 | Vis99

Mean 23.207 | 17.190 | 14.760 | 12.790 | 9.583 6.815 4.249 3.095
Median 22757 | 16.790 | 14.404 | 12.474 | 9.348 6.651 4.157 3.033
Mode 13.365 | 9.911 8.560 7.483 5.730 4.211 2.767 2.093

Skewness | 0.211 0.240 0.248 0.256 0.261 0.264 0.259 0.256
Kurtosis -1.134 | -1.116 | -1.111 | -1.105 | -1.102 -1.103 | -1.108 | -1.115

Based on Table 2.7 and by observing the decrease in the values of mean, median and
mode, it can be said that there is a decrease in the number of particles as the relative
humidity increases. By observing the skewness, it can be said that it is positively
skewed. This shows that there is a dominance of fine mode particles. Its increase with
the increase in RH from 0 to 95% shows that finer particles are becoming more in
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number compared to coarse particles. But from 95 to 99% there is a decrease, and this
shows the position where the soot particles became cloud condensation nuclei. From
the perspective of the kurtosis, it is negative (platykurtic). This shows that the
particles are below normal; this is due to the dominance of the fine mode particles as
observed in the skewness. The decrease in the magnitude of the kurtosis with the
increase in RH (0 to 90%) shows that there is an increase in the concentration of fine
particles. But the increase from 90 to 99% shows that some of the larger have started
sedimenting and the fine particles have started becoming bigger by acting as cloud
condensation nuclei.

By comparing o and skewness they both show the dominance of fine mode particles.
This is because, a is greater than 1.0 and the skewness is positive. The signs of o>
(positive) show the presence of coarse mode particles. Therefore, this shows that the
particle distribution is bimodal with the dominance of fine mode particles.

Conclusion

From the analysis of the data, it can be concluded that skewness can be used for
verification to determine the most dominant types of aerosols after determining the
Angstrom exponents. This is because, there some arguments on the range of values of
the exponents to ascertain whether the distribution is fine mode or coarse mode. Now,
o2 can be used to determine model distribution whether monomodal or bimodal. This
shows that there is the need to modify the importance of curvature as pointed out by
some researchers (Kaufman, 1993; Eck et. al., 1999; Eck. et. al., 2001b) on its use as
an additional indicator of the aerosol particle size with negative curvature indicating
aerosol size distributions dominated by the fine mode or monomodel distribution and
positive curvature indicating size distributions with a significant coarse mode
contribution or bimodal size distribution. From the kurtosis perspective, it can be used
to determine the degree of the variabilities between the average particle sizes and the
most common (mode).

TIME SERIES ANALYSIS

Introduction

A time series (TS) is a time-oriented or chronological sequence of observations on a
variable of interest (Montgomery et al., 2008). Mostly, these observations are
collected at equally spaced, discrete time intervals. When there is only one variable
upon which observations are made, such is called a single time series or, more
specifically, a univariate time series. Time series models have become popular in
recent years since the publication of a book by Box and Jenkins (1970), and the
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subsequent development of computer software for applying these models (Bell,
1984).

Time series data arise in virtually every application field, such as:
(i)  Business: sales figures, production numbers, customer frequencies, ...
(i)  Economics: Stock prices, exchange rates, interest rates, ...
(iii)  Official Statistics: Census data, personal expenditures, road casualties, ...
(iv) Natural Sciences: Population sizes, sunspot activity, chemical process data, ...
(v)  Environmetrics: Precipitation, temperature or pollution recordings, ...

A basic assumption in any time series analysis modelling is that some aspects of the
past pattern will continue to remain in the future. The objective of time series analysis
is generally to understand and identify the stochastic process that produced the
observed series and then to forecast future values of a series from past values alone
(Akgun, 2003).

In this presentation, our goal is to promote the intuitive understanding of seemingly
complicated time series models and their implications. We employ only the necessary
amount of theory and attempt to present major concepts in time series analysis via an
example.

THEORY

While the theory on mathematically oriented time series analysis is vast and mostly
difficult to non-statistician, the focus of this presentation is directed at data analysis.
Some basic properties of time series processes and models are presented. These focus
mostly on how to visualize and describe time series data, on how to fit models to data
correctly, on how to generate forecasts and on how to adequately draw conclusions
from the output that was produced.

Time Series Components and Decomposition

An important step in analysing TS data is to consider types of data patterns, so that

the models most appropriate to those patterns can be utilized. Four types of time

series components can be distinguished. They are:

(1) Horizontal — when data values fluctuate around a constant value.

(i1) Trend — when there is a long term increase or decrease in the data.

(ii1) Seasonal — when a series is influenced by season factor and reoccurs on regular
periodic basis.

(iv) Cyclic — when the data exhibit rise and fall that are not of a fixed period.
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Many data series include combinations of the preceding patterns. After separating the
existing pattern in any time series data, the pattern that remains unidentifiable form
the ‘random’ or ‘error’ component. Time plot (data plotted over time) and seasonal
plot (data plotted against individual seasons in which the data were observed) help in
visualizing these patterns while exploring the data. A crude, yet practical, way of
decomposing the original data (ignoring cyclic pattern) is to go for a seasonal
decomposition either by assuming an additive or multiplicative model viz:

Yt:TH'SH'Et (3 . 1)
or Yt:Tt'St'Et, (3 2)

where, Y~=the original TS data, T=Trend component, S=Seasonal component and
E=Error / Irregular component.

Equation (3.1) is called an additive seasonal model; this is appropriate for a time
series in which the amplitude of the seasonal pattern is independent of the average
level of the series, i.e. a time series displaying additive seasonality.

Equation (3.2) is called a multiplicative seasonal model; this is appropriate for a time
series in which the amplitude of the seasonal pattern is proportional to the average
level of the series, i.e. a time series displaying multiplicative seasonality. In other
words, if the magnitude of a TS varies with the level of the series then one has to go
for a multiplicative model, otherwise called an additive model. This decomposition
may enable one to study the TS components separately or will allow analysts to
de-trend or to do seasonal adjustments, if needed, for further analysis.

ARIMA Models

ARIMA is an abbreviation of AutoRegressive Integrated Moving Average introduced
by Box and Jenkins (Box et.al., 1994). As such, some authors refer to this modelling
approach as Box and Jenkins model. Box-Jenkins model is a stationary time series
model. Time series that generated from zero-mean, finite variance, and uncorrelated
variable are called ‘white noise’. Many useful models can be constructed from them.

Most physical processes exhibit inertia and do not change that quickly. This,
combined with the sampling frequency, often makes consecutive observations
correlate. Such correlation between consecutive observations is called autocorrelation.
When the data are autocorrelated, most of the standard modelling methods, based on
the assumption of independent observations may become misleading or sometimes
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even useless. We, therefore, need to consider alternative methods that take into
account the serial dependence in the data. This can be fairly easily achieved by
employing time series models such as the autoregressive integrated moving average
(ARIMA) models.

ARIMA, which is often called method of Box-Jenkins time series, has appreciable
accuracy for short-term forecasting, but less accuracy for long-term forecasting.
Usually, it will tend to become flat for a sufficiently long period. ARIMA model
ignores the independent variable completely, and uses past and present values of
dependent variable to produce accurate short-term forecasting (Hendranata, 2003).
ARIMA is suitable when the observation of time series is statistically related to the
dependent. The purpose of this model is to determine good statistical relationships
between the variables that are being predicted and the historical value of these
variables, so that forecasting can be performed with the model (Hendranata, 2003).

The ARIMA modelling is essentially an exploratory data-oriented approach that has
the flexibility of fitting an appropriate model which is adapted from the structure of
the datum itself. The stochastic nature of the time series can be approximately
modelled with the aid of autocorrelation function and partial autocorrelation function
from which information such as trend, random variables, periodic components, cyclic
patterns and serial correlation can be discovered. As a result, forecasts of the future
values of the series with some degree of accuracy can be readily obtained (Ho and
Xie, 1998).

Although ARIMA modelling is sophisticated in theory, but with the advent of
computer technology, the iterative model building process and, hence, accurate
forecast, can be aided and made simpler by the ease of many user-friendly statistical
software packages such as SAS, SPSS, Statgraphics, Statistica and Minitab. An
iterative three stage process, through model identification, parameter estimation and

diagnostic check, is required to determine the adequacy of the proposed model (Ho
and Xie, 1998).

ARIMA contains three components, namely: AutoRegressive (AR), Integrated (I) and
Moving Average (MA) parts. The AR part describes the relationship between present
and past observations. The MA part represents the autocorrelation structure of error.
The I part represents the differencing level of the series to eliminate non-stationary
(Hasmida, 2009). It is usually denoted by (p,d,q)(P,D,Q) where p denotes order of
autoregressive component, d denotes order of differencing, q denotes order of moving
average and (P,D,Q) denotes corresponding seasonal component.
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AR(p) model expresses that the current value of time series as a linear combination of
p previous values and a white noise term (random shock). Bell (1984) expresses the
current value of time series of AR(p) model as:

Yi=¢d1Yiqg++ @Y, + & (3.3)

where ¢q,..., ¢, are AR(p) parameters, the ¢ is the random shock in normal

distribution with zero mean and variance at time t, and p is the order of AR(p).
By introducing the backshift operator B, which defines (BY=Y1), equation (3.3) can
be written as:

(1-¢B—--—¢,BP)Y, = ¢, (3.4)

Or ¢,(B)Y, =&, where ¢,(B) = (1—¢1B— - —¢p,B7) (3.5)
MA(q) model expresses the current value of a time series as a linear combination of a
current and q previous values of a white noise process. The (purely) moving average
(MA) model is (Bell, 1984):

Yt = St - elgt_l —_ qut—q (36)

OrY,=(1-6,B—-—6,B"¢ or Y, =0,(B)e, (3.7)
where q is the order of MA(q), and 04(B) are parameters of MA(q).
To increase flexibility when fitting actual time series, both autoregressive and moving
average operators are combined to give the ARMA (p,q) model (Bell, 1984):
coefficients are MA(q) model parameters.

Yt = d)lyt—l + -+ d)pyt—p + gt - elgt—l _ qut—q (3.8)

Which can be written as:

(1-¢B—-—¢,BP)Y,=(1—-6,B—--—9,BY)e, or ¢,(B)Y,=0,Be
(3.9)

The mixed type of series which are explained both by its own lagged values and by
lagged noise terms, is called Autoregressive Moving-Average models of order (p,q).
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This systematic class of stationary time series models carries great importance and
usefulness especially in real-life situations. If the process is stationary, a suitable
ARMA model can be used to represent the data. If it is nonstationary, differencing is
applied to make the model become stationary and this leads to ARIMA model
(Akgun, 2003).

The first and most important condition of the series Y: in equation (3.8) or (3.9) is
that it has to be stationary. In practice Y; may well be nonstationary, but has to be
made stationary by first difference,

VY,=Y,-Y,, = (1-B)Y, (3.10)

If equation (3.10) ie (1-B)Y: is nonstationary, then there will be the need to take the
second difference,

VY, =Y, —2Y,_1+Y,., = (1—-B)?%, (3.11)

In general, we may need to take the d difference (1-B)dY: (although rarely is d
larger than 2). Substituting (1-B)dY; for Y. in (3.9) yields the ARIMA (p,d,q) model
(Bell, 1984):

¢p(B)(1 = B)Y, = 6,(B)e; (3.12)

where d is the order of differencing.

When a time series exhibits potential seasonality indexed by s, using a multiplied
seasonal ARIMA(p,d,q)(P,D,Q)* model is advantageous. The seasonal time series is
transformed into a stationary time series with non-periodic trend components. A
multiplied seasonal ARIMA model can be expressed as (Lee and Ko, 2011):

$,(B)Pp(BVIVDY, = 6,(B)0y(B)e, (3.13)

where

¢,(B) =1 — ¢1B — ¢p,B*-- — ¢,B?.0,(B) =1 — 6,B — 6,B*- — 6,B1

®p(B%) =1 — ®,B5 — ®,B?*5-- — ®pBFS, 0o(B°) =1—-0,B° — @,B%5.+. — G)QBQS
B is the backshift operator (i.e. BY=Y¢1, B’Y=Yw2, B?’Y=Yw12 and so on) s, is the
seasonal lag, and ¢, is a sequence of independent normal error variables with mean
zero and variance 2. VY, =Y, —-Y,_, = (Y,—BY,) = (1-B)Y,, V?Y,=V(Y, —
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Yo ) =W, =W =Y, =Y 1 —Vea—Ye ) =Y, =2V 1 +Y, p,=(1-
2B+ B?)Y,=(1-B)?, VY,=Y,—Y, . =({1-BY)Y,

where D is the order of seasonal differencing, ®p(B®) and ©,(B°) are the seasonal
AR(p) and MA(q) operators respectively.

EXPONENTIAL SMOOTHING

Exponential smoothing is a procedure for continually revising a forecast in the light
of more recent experience. Exponential Smoothing assigns exponentially decreasing
weights as the observation gets older. In other words, recent observations are given
relatively more weight in forecasting than the older observations.

Single Exponential Smoothing

This is also known as simple exponential smoothing. Simple smoothing is used for
short-range forecasting, usually just one month into the future. The model assumes
that the data fluctuates around a reasonably stable mean or level (no trend or
consistent pattern of growth).

The specific formula for simple exponential smoothing is:

where o is a smoothing constant between 0 and 1.

When applied recursively to each successive observation in the series, each new
smoothed value (forecast) is computed as the weighted average of the current
observation and the previous smoothed observation; the previous smoothed
observation was computed in turn from the previous observed value and the smoothed
value before the previous observation, and so on.

Thus, in effect, each smoothed value is the weighted average of the previous
observations, where the weights decrease exponentially depending on the value of
parameter (o). If it is equal to 1 (one) then the previous observations are ignored
entirely; if it is equal to 0 (zero), then the current observation is ignored entirely, and
the smoothed value consists entirely of the previous smoothed value (which in turn is
computed from the smoothed observation before it, and so on; thus all smoothed
values will be equal to the initial smoothed value Lo). In-between values will produce
intermediate results.
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Double Exponential Smoothing

This method is used when the data show a trend. Exponential smoothing with a trend
works much like simple smoothing except that two components must be updated each
period - level and trend. The level is a smoothed estimate of the value of the data at
the end of each period. The trend is a smoothed estimate of average growth at the end
of each period. The specific formulas for double exponential smoothing are:

Li=a¥,+ (1—a)(L,; + T,y) 0<a<l (3.16)
Ty=y(Li—Li) +A—PTey  0<y<l (3.17)

Note that the current value of the series is used to calculate its smoothed value
replacement in double exponential smoothing.

Triple Exponential Smoothing

This method is used when the data show level, trend and seasonality. To handle
seasonality, we have to add a third parameter. We now introduce a third equation to
take care of seasonality. The resulting set of equations is called the ”Holt-Winters”
(HW) method, after the names of the inventors.

Estimate of the level L, = a(Y,/S;—s) + (1 — a)(Li_1 + T:_1) (3.18)
Estimate of the growth rate (or trend) T, = y(L; — L,_1) + 1 —y)T.—1 (3.19)

Estimate of the seasonal factor S, = §(Y,/L,) + (1 — 8)S;—s (3.20)

where a, v, and o are smoothing constants between 0 and 1, s = number of seasons in
a year (s = 12 for monthly data, and s = 4 for quarterly data).

GOODNESS-OF-FIT MEASURES

This subsection provides definitions of the goodness-of-fit measures used in time

series modelling.

1. Stationary R-squared. A measure that compares the stationary part of the model
to a simple mean model. This measure is preferable to ordinary R-squared when
there is a trend or seasonal pattern. Stationary R-squared can be negative with a
range of negative infinity to 1. Negative values mean that the model under
consideration is worse than the baseline model. Positive values mean that the
model under consideration is better than the baseline model.
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R-squared. An estimate of the proportion of the total variation in the series that
is explained by the model. This measure is most useful when the series is
stationary. R-squared can be negative with a range of negative infinity to 1.
Negative values mean that the model under consideration is worse than the
baseline model. Positive values mean that the model under consideration is
better than the baseline model.

RMSE. Root Mean Square Error. The square root of mean square error. A
measure of how much a dependent series varies from its model-predicted level,
expressed in the same units as the dependent series.

MAPE. Mean Absolute Percentage Error. A measure of how much a dependent
series varies from its model-predicted level. It is independent of the units used
and can, therefore, be used to compare series with different units.

MAE. Mean absolute error. Measures how much the series varies from its
model-predicted level. MAE is reported in the original series units.

MaxAPE. Maximum Absolute Percentage Error. The largest forecast error,
expressed as a percentage. This measure is useful for imagining a worst-case
scenario for your forecasts.

MaxAE. Maximum Absolute Error. The largest forecast error, expressed in the
same units as the dependent series. Like MaxAPE, it is useful for imagining the
worst-case scenario for your forecasts. Maximum absolute error and maximum
absolute percentage error may occur at different series points - for example,
when the absolute error for a large series value is slightly larger than the absolute
error for a small series value. In that case, the maximum absolute error will
occur at the larger series value and the maximum absolute percentage error will
occur at the smaller series value.

Normalized BIC. Normalized Bayesian Information Criterion. A general
measure of the overall fit of a model that attempts to account for model
complexity. It is a score based upon the mean square error and includes a penalty
for the number of parameters in the model and the length of the series. The
penalty removes the advantage of models with more parameters, making the
statistic easy to compare across different models for the same series.

Significance Level (p-value): There is always a probabilistic component involved
in the accept-reject decision in testing hypothesis. The criterion that is used for
accepting or rejecting a null hypothesis is called significance level or p-value.
The p-value represents the probability of concluding (incorrectly) that there is a
difference in your samples when no true difference exists. In other words, a
p-value of 0.05 means there is only a 5% chance that you would be wrong in
concluding that the populations are different or 95% confident of making a right
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decision. For atmospheric sciences research, a p-value of 0.05 or 0.10 is
generally taken as standard.

EXAMPLE: ANALYSIS OF METROLOGICAL DATA

Daily data used in this presentation were obtained from Centre for Atmospheric
Research (CAR), sited at Kogi State University Campus, Anyigba, Nigeria. The
station has in its data base, four the meteorological parameters of solar radiation,
relative humidity, temperature and wind speed, daily data spanning for three years
(2010, 2011 and 2012). The data, which was recorded at five minutes intervals, were
averaged monthly for sunshine hours between 07.00 and 18.00 hours local time, using
Microsoft Excel spread sheet.

Methodology

An important preliminary step in any data analysis is to consider the possibility of
(non-linear) data transformation. It is often the case that the scale in which the data
naturally arrives to the data analyst is not necessarily the best scale to analyse them.
The primary goal of the transformation is to identify a scale where the residuals, after
fitting a model, will have homogeneous variability and be independent of the level of
the time series. The most common transformation used is the logarithmic
transformation.

In this case, the Expert Modeler of SPSS 16.0 software was used. The Expert
Modeler only selects the candidate predictors to find the best model of those
predictors that have a statistically significant relationship with the dependent series. It
shows how predictors are useful (in terms of how each predictor is significant) and
the model developed can be used for making forecast with the predictors. The
modeler will give either exponential smoothing or ARIMA models. It shows whether
the model is additive or multiplicative and also whether there is/are transformations.
Forecasts are made of these parameters for the year 2013.

23



H b U

N O O

o O O
S BKﬁil\

380 44
340 +
300 '
5 5| & 5 58|55 & E 5355 &5 gB
2010 2011 2012

Figure 3.1: The plots of the meteorological data for the years 2010 to 2012 for the
area under study

Figure 3.1 shows the behaviours of the parameters. It can be observed that the
parameters are almost proportional to each other, because they almost follow the
same cyclic pattern. It can be observed that solar radiation, wind speed, temperature,
and RH are correlated. Wind speed and temperature follow the same trend in all the
months of the three years period. RH and, in turn, Solar radiation are higher in the
months between March and June, dipping between July and August and higher again
in September to October and low in November and December. This trend is normal
because solar radiation in the months of March to June are expected to be high as a
result of clear sky and lower dust loadings due to the wind movement from land to
sea. The lower values are experienced during the rainy season, when the skies are
cloudy and wind movement is from sea to land. This will result in the absorption of
incoming solar radiation by water droplets, leading to its extinction before reaching
recording instruments.

Results and Discussions

Solar Radiation
Table 3.1: Model Summary of Model Parameters for Solar Radiation
Solar Rad Model Simple Seasonal
Stationary R? R? Sig.
0.81793 0.86173 0.12010
Exponential Smoothing Model Parameters
No Transformation Estimate Sig.
Alpha (Level) 0.099998 0.202155
Delta (Season) 0.000091 0.999698
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From Table 3.1, the model obtained was simple seasonal. This model is appropriate
for series with no trend and a seasonal effect that is constant over time. Its smoothing
parameters are level and season. This shows that solar radiation did not increase over
the years and its seasonal effect is constant for these years. From the values of R? and
stationary R?, it can be said that the model is good, but by observing the value of
significance, it shows that the model is not significant. Also, from the values of the
significant of the model parameters, it can be seen that the parameters are not
significant, most especially, the seasonal parameter.
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Figure 3.2: The plots of measured solar radiation and estimated solar radiation
using time series analysis

Figure 3.2 shows the plots of solar radiation for the measured and the estimated from
our modelling. The plots show that the model can fairly estimate the parameter very
well.

Relative Humidity
Table 3.2: Model Summary of Model Parameters for relative humidity
RH Model Simple Seasonal
Stationary R? R? Sig.
0.78795 0.98466 0.59696
Exponential Smoothing Model Parameters
No Transformation Estimate Sig.
Alpha (Level) 0.199978738 0.069059
Delta (Season) 9.95326E-06 0.999904
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From Table 3.2, the model obtained was simple seasonal. This model is appropriate
for series with no trend and a seasonal effect that is constant over time. Its smoothing
parameters are level and season. This shows that RH did not increase over the years
and its seasonal effect is constant for these years. From the values of R? and
stationary R?, it can be said that the model is good, but by observing the value of
significance, it is clear that the model is not significant. Also, from the values of the
significant of the model parameters, it can be seen that the parameters are not
significant, most especially, the seasonal parameter.
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Figure 3.3: The plots of measured Relative Humidity and Estimated Relative
Humidity using time series analysis

Figure 3.3 shows the plots of RH for the measured and the estimated from our
modelling. The plots show that the model can estimate the parameter very well.

Temperature
Table 3.3: Model summary of model parameters for temperature
Temp Model 3 Simple Seasonal
Stationary R? R? Sig.
0.83898 0.93209 0.07129
Exponential Smoothing Model Parameters
No Transformation Estimate Sig.
Alpha (Level) 0.09979 0.349563
Delta (Season) 5.67E-05 0.999747
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From Table 3.3, the model obtained was simple seasonal. This model is appropriate
for series with no trend and a seasonal effect that is constant over time. Its smoothing
parameters are level and season. This shows that temperature did not increase over
the years and its seasonal effect is constant for these years. From the values of R? and
stationary R?, it can be said that the model is good, but by observing the value of
significance, it shows that the model is not significant. Also, from the values of the
significant of the model parameters, it can be seen that the parameters are not
significant, most especially, the seasonal parameter.
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Figure 3.4: The plots of measured Temperature and Estimated measured Temperature
using time series analysis

Figure 3.4 shows the plots of temperature for the measured and the estimated from
our modelling. The plots show that the model can estimate the parameter very well.

Wind Speed
Table 3.4: Model summary of model parameters for wind speed.
WS Model 4 Winters' Additive
Stationary R? R? Sig.
0.83230 0.73496 0.01348
Exponential Smoothing Model Parameters
No Transformation Estimate Sig.
Alpha (Level) 0.088699597 0.570853896
Gamma (Trend) 3.02474E-07 0.999992013
Delta (Season) 4.26079E-05 0.999860413
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From Table 3.4, the model obtained was Winter's additive. This model is appropriate
for series with a linear trend and a seasonal effect that does not depend on the level of
the series. Its smoothing parameters are level, trend, and season. This shows that wind
speed has a linear trend and a seasonal effect that does not depend on the level of the
level of the speed (that is it does not depend on the initial speed). From the values of
R? and stationary R?, it can be said that the model is good, and also by observing the
value of significance, it shows that the model is very significant. Also, from the
values of the significant of the model parameters, it can be seen that the parameters
are not significant, most especially, the trend and seasonal parameters.

Wind Speed Predicted Wind Speed

Figure 3.5: The plots of measured Wind Speed and Estimated measured Wind Speed
using time series analysis

Figure 3.5 shows the plots of wind speed for the measured and the estimated from our
modelling. The plots show that the model can only estimate the parameter poorly.

Conclusion

From the analysis of the results, it can be said that solar radiation, relative humidity
and temperature have simple seasonal relation. That is they do not increase
throughout the three years, and their seasonal effects are constants. The wind speed
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has winters additive model. That is, it has linear trend and the seasonal effect does not
depend on the level (initial speed). Also, considering the values of the stationary R?, it
can be said that the models are good, since each one can estimate more than 75% of
the measured parameters. The American Statistical Association (ASA) has released a
“Statement on Statistical Significance and P-Values” with six principles underlying
the proper use and interpretation of the p-value. It was finally concluded that the
p-value should never be intended to be a substitute for scientific reasoning and that
well-reasoned statistical arguments should contain much more than the value of a
single number (ASA News, 2016).

EMPIRICAL ORTHONAL FUNCTIONS

Introduction

Climate can be defined, in mathematical terms, as the aggregation of all long-term
statistical properties of the atmospheric state or, as defined by Lorenz (1970), Climate
is regarded as the aggregation of (random) daily weather. It is, therefore, the
long-term statistics of weather. Climate variations are also the result of exceedingly
complex non-linear interactions between very many degrees of freedom or modes.
Both weather and climate are characterized by non-linearity and high dimensionality.
Consequently, a challenging task is to find ways to reduce the dimensionality of the
system to a few modes if possible. A further, yet challenging, task is to link these
modes to the dynamics/physics of the system.

Empirical orthogonal function (EOF) analysis, also called principal component
analysis (PCA ) (Fukuoka, 1951; Lorenz, 1956), is among the most widely and
extensively used methods in dimensionality reduction and patterns extraction in
atmospheric science. Both names are commonly used, and refer to the same set of
procedures. Typically, the EOFs are found by computing the eigenvalues and
eigenvectors of a spatially weighted anomaly covariance matrix of a field. The
derived eigenvalues provide a measure of the percent variance explained by each
mode.

The atmospheric data are usually converted into a two-dimensional matrix. The

easiest example to imagine is a data set that consists of observations of several

variables at one instant of time, but includes many realizations of these variable

values taken at different times. One can imagine several possible generic types of data

matrices.

1) A space-time array: Measurements of a single variable at M locations taken at N
different times, where M and N are integers.

29



i1) A parameter-time array: Measurements of M variables (e.g. temperature,
pressure, relative humidity, rainfall, . . .) taken at one location at N times.

iil) A parameter-space array: Measurements of M variables taken at N different
locations at a single time.

iv) EOF analysis could just as well be applied to concentrations of M different
chemical compounds from N different experiments.

One can still imagine other possibilities.

This presentation is intended to provide a basic introduction to what has become a
very large subject. The theories presented here are the main rudimentary aspects that
are needed in understanding the EOF. The SPSS was used in the analysis, and here
demonstrations were done on how to analyse the outputs.

THEORY
The data to be used for the EOF analysis are transformed into a two-dimensional data
matrix by the software, X (say) as follows:

Xx=M | |=X, wherei=1m;j=1N  (@.1)

where M and N are the dimensions of the data matrix enclosed by the square brackets,
and the subscript notation X to indicate the same matrix. The transpose of the matrix
are obtained by reversing the order of the indices to make it an NxM matrix.

M
XT=N | | =X, wherei=1,M;j = 1N 4.2)

In multiplying a matrix times itself we generally need to transpose it once to form an
inner product, which results in two possible “dispersions” matrices, in this case are

called correlation/covariance matrices. The first can be obtained as:
N M M

C=xx"=M | || | N=xxi=x= | | M @3

The other dispersion matrix in which the roles of the structure and sampling variables

are reversed.
M N N

c=x'x=N | || | Mm=xuxy=x;=] | N @

30



In this projection of a matrix onto itself, one of the dimensions gets removed and we
are left with a measure of the dispersion of the structure with itself across the
removed dimension (or the sampling dimension). If the sampling dimension is time,
then the resulting dispersion matrix is the matrix of the covariance of the spatial
locations with each other, as determined by their variations in time. These dispersion
matrices are in fact covariance/correlation matrices. In the second case, the
covariance at different times is obtained by projecting on the sample of different
spatial points. Either of these dispersion matrices may be scientifically meaningful,
depending on the problem under consideration. These matrices generated can be
either positive definite or positive semi-definite covariance/correlation matrices and
are usually symmetrical.

EOF (or PCA) analysis consists of an eigenvalue analysis of any one of these
dispersion matrices. Any symmetric matrix C can be decomposed through a
diagonalization, or eigen analysis using the following:

Cei = Aiei (46)

CE = EA (4.7)

where E is the matrix with the eigenvectors ¢; as its columns, and A is the matrix with
the eigenvalues A, along its diagonal and zeros elsewhere. The eigenfucntions of the
Hermtian matrix C form an orthonormal basis to represent C and hence called
empirical functions or empirical modes. The eigenvalue A; is a measure of the
percentage variability represented by i EOF.

The set of eigenvectors, ei, and associated eigenvalues, Ai, represent a coordinate
transformation into a coordinate space where the matrix C becomes diagonal.
Because the covariance/correlation matrix is diagonal in this new coordinate space,
the variations in these new directions are uncorrelated with each other, at least for the
sample that has been used to construct the original covariance/correlation matrix. The
eigenvectors define directions in the initial coordinate space along which the
maximum possible variance can be explained, and in which variance in one direction
is orthogonal to the variance explained by other directions defined by the other
eigenvectors. The eigenvalues indicate how much variance is explained by each
eigenvector. If you arrange the eigenvector/ eigenvalue pairs with the biggest
eigenvalues first, then you may be able to explain a large amount of the variance in
the original data set with relative few coordinate directions, or characteristic
structures in the original structure space.
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The tendency of the empirical modes to extract poorly representative commonality
among subdomains of large datasets can be remedied by grouping the variance
through a rotation procedure. A variety of such procedures are available (Richman,
1986); however, the rotation technique most commonly used to group the variability
in geophysical applications is the varimax orthogonal rotation.

Most of the rationale for rotating factors comes from Thurstone (1947) and Cattell
(1978) who defended its use because this procedure simplifies the factor structure and
therefore makes its interpretation easier and more reliable (i.e., easier to replicate with
different data samples).

A rotation is specified by a rotation matrix denoted R, where the rows stand for the

original factors and the columns for the new (rotated) factors. At the intersection of

row m and column n we have the cosine of the angle between the original axis and

the new one: rms=cosOmn. For example the rotation illustrated in Figure 4.1 will be
characterized by the following matrix:

cosBy; cosB, cosB;; —sinBq,

~ lcosBy; cos 62,2] - [sin 011 cos6qg (4.8)

with a value of 0;,1=15 degrees. A rotation matrix has the important property of being
orthonormal because it corresponds to a matrix of direction cosines and therefore
RTR=I.
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Figure 4.1: An orthogonal rotation in 2 dimensions. The angle of rotation between an
old axis m and a new axis n is denoted by Oy, .
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In oblique rotations the new axes are free to take any position in the factor space, but
the degree of correlation allowed among factors is, in general, small because two
highly correlated factors are better interpreted as only one factor. Oblique rotations,
therefore, relax the orthogonality constraint in order to gain simplicity in the
interpretation. They were strongly recommended by Thurstone, but are used more
rarely than their orthogonal counterparts.

In general, a rotation is a linear transformation of the modes that attempts to find a
new location for the coordinate axis, such that projections of the variable onto those
axes simplify the spatial or temporal structure of the modes. A detailed discussion of
the advantages and disadvantages of rotated empirical modes is given by Richman
(1986); Jolliffe, (1987); Richman, (1987). In most applications, the rotation is used to
simplify the spatial structure by isolating regions with similar temporal variability
(e.g. Horel, 1981; Barnston and Livezey, 1987; Kawamura, 1994; Mestas-Nunez and
Enfield, 1999). The resulting rotated space patterns are generally more robust (i.e.
less sensitive to sampling errors) than their unrotated counterparts (Cheng et. al.,
1995). Alternatively, the rotation can also be used to simplify the temporal structure
by isolating time periods with similar space patterns (e.g. Fernandez, 1995).

Interpretation is more straightforward if each variable is highly loaded on at most one
factor, and if all factor loadings (also known as correlation coefficients) are either
large or positive or near zero, with few intermediate values (see Everitt and Dunn,

2001). The SPSS provides several methods of rotation that try to achieve these goals,

some of which produce orthogonal factors (varimax, quartimax, and equamax) and

others that lead to an oblique solution (direct oblimin and promax).

The following are the six possible options for the rotations:

(1) The first one no rotation.

(i1)) Varimax Method - An orthogonal rotation method that minimizes the number
of variables that have high loadings on each factor. This method simplifies the
interpretation of the factors.

(iii) Quartimax Method - A rotation method that minimizes the number of factors
needed to explain each variable. This method simplifies the interpretation of the
observed variables.

(iv) Equamax Method - A rotation method that is a combination of the varimax
method, which simplifies the factors, and the quartimax method, which
simplifies the variables. The number of variables that load highly on a factor and
the number of factors needed to explain a variable are minimized.

(v) Direct Oblimin Method - A method for oblique (nonorthogonal) rotation.
When delta equals 0 (the default), solutions are most oblique. As delta becomes
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more negative, the factors become less oblique. To override the default delta of 0,
enter a number less than or equal to 0.8.

(vi) Promax Rotation - An oblique rotation, which allows factors to be correlated.
This rotation can be calculated more quickly than a direct oblimin rotation, so it
is useful for large datasets.

For orthogonal rotations, the rotated component matrix and component
transformation matrix are displayed. For oblique rotations, the pattern, structure and
component correlation matrices are displayed. In addition they all have Component
Score Coefficient Matrix (Eigen Vectors) displayed.

Example

In this following example, the non-rotated EOF and the five rotated EOFs are
analysed. The data used here are from the meteorological data used in the time series
(Section 3).

Results and Discussions
Here are the results of the analysis using empirical orthogonal functions:

Table 4.1: The correlation matrix

Solar_Rad | RH Temp WS
Correlation | Solar Rad 1 -0.6428 | 0.7129 | 0.2002
RH -0.6428 1 -0.5044 | 0.1084
Temp 0.7129 -0.5044 | 1 0.6027
WS 0.2002 0.1084 0.6027 1

Table 4.1 shows the correlation matrix. This is typically used to do an eyeball test and
to get a feeling for which variable is strongly associated with which variable. The
correlation matrix is closely related to multiple regression and explained variance.
The matrix shows the fraction of the variance of each variable that can be explained
by all of the other variables. Since this is relatively large, it suggests that the variables
are closely related and that the data set is, therefore, a good candidate for factor
analysis. The off diagonal terms are the fractions of the variance of each variable that
can only be explained by the variable indicated. It shows large correlations between
solar radiation with RH and temperature, between RH and temperature, temperature
and wind speed and low correlation between wind speed with solar radiation and RH.
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Table 4.2: The communalities of the parameters

Initial Extraction
Solar Rad 1 0.83090131
RH 1 0.87113246
Temp 1 0.91835973
WS 1 0.95109195

From Table 4.2, it is clear that the communalities are found from the factor solution
by the sum of the squared loadings. The Table shows that 83.1% of the solar radiation,
87.1% of the RH, 91.8% of temperature and 95.1% of wind speed are all accounted
by the components extracted.

Table 4.3: The KMO and Bartlett's Test

KMO and Bartlett's Test
Kaiser-Meyer-Olkin Measure of Sampling
0.5358
Adequacy.
Bartlett's Test of Sphericity Approx. Chi-Square 71.5520
Df 6
Sig. 1.96E-13

Table 4.3 is the KMO and Bartlett test that is used for the test of sphericity. The
KMO criterion can have values between [0,1] where the usual interpretation is that
0.8 indicates a good adequacy to use the data in a factor analysis. If the KMO
criterion is less than 0.5, this implies that no meaningful information can be obtained.
From the value of the KMO it is evident that some information can be obtained. The
value of the significance parameter shows that the data are statistically significant.

i) No Rotation
Table 4.4: The total variance explained table for no rotation

Component Initial Eigenvalues Extraction Sums of Squared Loadings
Total % of Cumulative Total % of Cumulative %
Variance | % Variance
1 2.3774 | 59.4342 | 59.4342 2.3774 59.4342 59.4342
2 1.1941 29.8529 | 89.2871 1.1941 29.8529 89.2871
3 0.2921 7.3021 | 96.5892
4 0.1364 3.4108 | 100
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Table 4.4 summarizes the total variance explained by the PCA solution and gives an
indication about the number of useful factors. This Table has three parts. The first
part shows the number of components extracted, which is usually the same as the
number of the variables or parameters. There are a total of four (4) components,
which is the same as the number of variables entered into the PCA. However, please
note that these components are not the same as the variables. The first column under
Initial Eigenvalues gives the eigenvalues for all the possible factors in a decreasing
order. This is followed by the variance as a percentage of all the variance and
cumulative variance.

The third part, titled: Extraction Sums of Squared Loadings, gives information for
factors with eigenvalues greater than 1. The word “extraction” here refers to the fact
that these values are calculated after factor extraction. SPSS extracts all factors that
have an eigenvalue greater than 1. In our own case, the analysis extracted two factors.
This shows how much of the total variance of the observed variables is explained by
each of the principal components. The first principal component (scaled eigenvector),
by definition the one that explains the largest part of the total variance, has a variance
(eigenvalue) of 2.38; this amounts to 59% of the total variance. The second principal
component has a variance of 1.19 and accounts for 29.9% of the variance. The
“Cumulative %” column of the Table tells us how much of the total variance can be
accounted for by the first two(2) components put together. For example, the first two
principal components account for 89.3% of the total variance.

Notice that the third and fourth eigenvalues are small. Pretty clearly there are only
two significant eigenvectors here. The rule of thumb is that the model should explain

more than 70% of the variance. In our data the model explains 89.3%.

Table 4.5: Component Matrix for no rotation

Component

1 2
Temp 0.9274 0.2413
Solar Rad 0.8827 -0.2276
RH -0.7139 0.6012
WS 0.4779 0.8501

The correlations for the first two unrotated components loadings are shown in Table
4.5. These values represent how the variables are weighted for each component and
the correlation between the variables and the components. For each of the variables,
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we get a loading in each of the columns representing components. The variables are
listed in the decreasing order of factor loadings as we requested the same in the
Options window.

The coefficients in this Table specify the linear function of the observed variables that
define each component. The SPSS presents the coefficients scaled so that when the
principal component analysis is based on the correlation matrix, they give the
correlations between the observed variables and the principal components. These
coefficients are often used to interpret the principal components and, possibly, give
them names.

It can be observed that component 1 is mostly dominated by temperature, solar
radiation, RH and moderate wind speed. This can be characterized as typical dry
season. The second component is dominated by RH and wind speed, and this is the
typical nature of rainy season.

In this Table 4.5, it can also be seen that the variables which have high correlation on
component 1 have low correlation on component 2. Likewise, those with high

correlation on component 2 have low correlation on component].

Table 4.6:  Component Score Coefficient Matrix (Eigen Vectors) for no rotation

Component
1 2
Solar Rad 0.3713 -0.1906
RH -0.3003 0.5035
Temp 0.3901 0.2021
WS 0.2010 0.7119

Table 4.6 shows the eigenvectors of the two eigenvalues displayed. These values
represent the coefficient of the basis vectors. These are the principal components.
Table 4.7: Reproduced Correlations after the analysis for no rotation

Solar_Rad RH Temp WS

Solar Rad 0.8309 -0.7670 0.7637 0.2284

Reproduced | RH -0.7670 0.8711 -0.5171 0.1699
Correlation | epy 0.7637 -0.5171 0.9184 0.6484
ws 0.2284 0.1699 0.6484 0.9511
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From Table 4.7 The reproduced correlation matrix is related to multiple regression
and explained variance. The matrix shows the correlation coefficients of the variance
of each variable that can be explained by all of the other variables. Since the
coefficients are relatively large, it suggests that the variables are closely related and
that the data set is, therefore, a good candidate for factor analysis. The off diagonal
terms are the coefficients of the variance of each variable that can only be explained
by the variable indicated.

ii) Orthogonal Rotations

Factor extraction is usually followed by rotation in order to maximize large

correlations coefficients and minimize small correlations coefficients. Rotation

usually increases simple structure and interpretability. The most commonly used is
the Varimax variance maximizing procedure which maximizes the correlations
coefficients.

(a) Verimax: this is focusing on the columns. It tends to produce multiple
group components,  maintaining orthogonality often results in increased
multivocality (loadings of variables on "primary factors" is decreased a bit
and loadings on "secondary factors" is raised a bit).

(b)

Table 4.8: The Total Variance Explained for Verimax

Component Initial Eigenvalues Rotation Sums of Squared
Loadings

Total % Var. Cum. % Total % Var Cum. %
2.3774 59.4342 59.4342 | 2.0529 51.3237 51.3237

1.1941 | 29.8529 | 89.2871 | 1.5185 | 37.9634 | 89.2871
0.2921 7.3021 96.5892

0.1364 3.4108 100

AW (N [—

Table 4.8 summarizes the total variance explained by the PCA solution and gives an
indication about the number of useful factors as explained previously.

The last part titled: Rotated Sums of Squared Loadings gives the information for
extracted factors after rotation. It can be noted that after rotation, only the relative
value of eigenvalues has changed, the cumulative percentage remains the same. The
first principal component (scaled eigenvector), which explains the largest part of the
total variance, has a variance (eigenvalue) of 2.05; this amounts to 51.32% of the total
variance. The second principal component has a variance 1.52 and accounts for a
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further 37.96% of the variance. The first two principal components account for
89.29% of the total variance.
Table 4.9: The Rotated Component Matrix for Verimax

Component
1 2
RH -0.9230 0.1384
Solar Rad 0.8712 0.2683
WS -0.0379 0.9745
Temp 0.6638 0.6912

From Table 4.9 it is evident that if we perform an orthogonal rotation we obtain the
correlation structure in which we find that the first component has strong correlations
with the three physical variables (Solar radiation, temperature and RH), and a weak
correlation with wind speed, and the second component has strong correlations with
wind speed and temperature.

The rotated components of the varimax orthogonal rotation represent both how the
variables are weighted for each factor and the correlation between the variables, and
the components. A varimax rotation attempts to maximize the squared loadings of the
columns. Based on these components loadings, it can be said that the first component
represents dry season, and the second component represents rainy season. The
complex loadings of temperature implies that the place had high temperature
throughout the years.

Table 4.10 The Component Transformation Matrix for Verimax

Component 1 2
1 0.851953447 | 0.52361754
2 -0.523617536 | 0.85195345

Table 4.10 shows the component transformation matrix. This is used to see whether
the rotation technique is suitable or not. Usually, a suitable rotation technique will
result in a nearly symmetrical off-diagonal, which is not true in this case.

Table 4.11: The Component Score Coefficient Matrix (Eigen Vectors) for Verimax

Component

1 2
Solar Rad 0.4161 0.0320
RH -0.5195 0.2717
Temp 0.2265 0.3764
WS -0.2015 0.7118
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Table 4.11 shows the eigenvectors of the two eigenvalues displayed in Table 4.8. The
values represent the coefficients of the basis vectors. The first component shows that
solar radiation and temperature have positive values, while RH and wind speed have
negative values. From the second component, it can be seen that all have positive
coefficients, but wind speed, temperature and RH, have higher coefficients while
solar radiation has very small value.

b) Quartimax: this is focusing on the rows and it tends to produce a general
factor and additional smaller multiple group factors
Table 4.12: Total Variance Explained for Quartimax

Component Initial Eigenvalues Rotation Sums of Squared
Loadings
Total % Var | Cum % | Total | % Var | Cum %
1 2.3774 59.434 | 59.434 | 2.143 | 53.567 | 53.567
2 1.1941 29.853 | 89.287 | 1.429 | 35.721 | 89.287
3 0.2921 7.302 | 96.589
4 0.1364 3411 100

As reflected in Table 4.12, the last part titled: “Rotated Sums of Squared Loadings”
gives the information for extracted components after rotation. Note that after rotation,
only the relative value of eigenvalues has changed, the cumulative percentage
remains the same.

The first principal component (scaled eigenvector), which explains the largest part of
the total variance, has a variance (eigenvalue) of 2.14; this amounts to 53.57% of the
total variance. The second principal component has a variance 1.43 and accounts for a
further 35.72% of the variance. The first two principal components account for
89.29% of the total variance.

Table 4.13: Rotated Component Matrix for Quartimax

Component

1 2
RH -0.9070 | 0.2203
Solar Rad 0.8917 | 0.1894
Temp 0.7229 | 0.6291
WS 0.0493 | 0.9740

From Table 4.13, after performing the orthogonal rotation, we obtain the correlation
structure in which we find that the first component has strong correlations with the
three physical variables (Solar radiation, temperature and RH), and a weak correlation
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with wind speed, and the second component has strong correlations with wind speed
and temperature.

The rotated component for the Quartimax orthogonal rotation represents both how the
variables are weighted for each factor and the correlation between the variables, and
the components. Based on these components loadings, it can be said that the first
component represents dry season, and the second component represents rainy season.
Because of the complex loadings of temperature, this implies that the place has high
temperature throughout the years.

Table 4.14 Component Transformation Matrix for Quartimax

Component 1 2
1 0.8953 0.4454
2 -0.4454 | 0.8953

Table 4.14 shows the component transformation matrix. This is used to see whether
the rotation technique is suitable or not. Usually, a suitable rotation technique will
result in a nearly symmetrical off-diagonal which is not true in the case.

c) Equamax: this is a compromise between Verimax and Quartimax.
Table 4.15: Total Variance Explained for Equamax
Component Initial Eigenvalues Rotation Sums of Squared
Loadings
Total | % Var Cum % Total % of Var Cum %
2377 | 59.434 59.434 | 2.053 51.324 51.324
2 1.194 | 29.853 89.287 | 1.519 37.963 89.287
0.292 7.302 96.589
0.136
4 4 3.410 100

As it is depicted in Table 4.15, the last part titled: “Rotated Sums of Squared
Loadings” gives the information for extracted components after rotation.

The first principal component (scaled eigenvector) which explains the largest part of
the total variance has a variance (eigenvalue) of 2.05; this amounts to 51.32% of the
total variance. The second principal component has a variance 1.52 and accounts for
37.96% of the variance. The first two principal components account for 89.29% of the
total variance.

Note that after rotation it is only the relative value of eigenvalues that has changed the
cumulative percentage remains the same.
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Table 4.16 :Rotated Component Matrix for Equamax

Component

1 2
RH -0.9230 | 0.1384
Solar Rad 0.8712 | 0.2683
WS -0.0379 | 0.9745
Temp 0.6638 | 0.6912

In Table 4.16, it is clear that after performing the orthogonal rotation, we obtain the
correlation structure, in which we find that the first component has strong correlations
with the three physical variables (Solar radiation, temperature and RH), and a weak
correlation with wind speed; the second component has strong correlations with wind
speed and temperature.

The rotated component for the Equamax orthogonal rotation represents both how the
variables are weighted for each factor and the correlation between the variables, and
the components. Based on these components loadings, it can be said that the first
component represents dry season, and the second component represents rainy season.
Because of the complex loadings of temperature, the place has high temperature
throughout the years.

Table 4.17 The component transformation matrix for Equamax

Component 1 2
1 0.8520 0.5236
2 -0.5236 0.8520

Table 4.17 shows the component transformation matrix. This is used to see whether
the rotation technique is suitable or not. Usually, a suitable rotation technique will
result in a nearly symmetrical off-diagonal which is not true in the case.

Table 4.18: Component Score Coefficient Matrix (Eigen Vectors) for Equamax

Component

1 2
Solar Rad 0.4161 0.0320
RH -0.5195 | 0.2717
Temp 0.2265 0.3764
WS -0.2015| 0.7118

42



Table 4.18 shows the eigenvectors of the two eigenvalues. The values represent the
coefficient of the basis vectors. The first component shows that solar radiation and
temperature have positive values, while RH and wind speed have negative values.
From the second component, it can be seen that all have positive coefficients.
However, wind speed, temperature and RH have larger positive coefficients with very
small positive value in solar radiation.

iii) Oblique Rotation
In oblique rotation, the steps for extraction are as follows:

a. The variables are assessed for the unique relationship between each
factor and the variables (removing relationships that are shared by
multiple factors)

The matrix of unique relationships is called the pattern matrix.

c. The pattern matrix is treated like the loading matrix in orthogonal

rotation.

When an oblique rotation is performed, two different matrices that can be used for
interpretation are obtained: the pattern structure and factor correlation matrices.

If an oblique rotation, in which both spatial and temporal orthogonality are relaxed, is
performed, the structures can be made even more close to zero and one, but the basic
structure remains the same. The pattern matrix holds the beta weights to reproduce
variable scores from factor scores.

There is a considerable disagreement about which of the following is the better basis

for factor interpretation:

(1) Those who like using the structure matrix point out the long history of naming
or interpreting factors in terms of the “variables with which they correlate.”

(i1) Those who like using the pattern matrix point out that there is often "simpler
structure" in the pattern matrix

(ii1))  Those who like using the structure matrix point out that the apparent "simpler
structure" (i.e., fewer multivocal items) in the pattern matrix is an illusion,
made possible because of the correction for collinearity by the beta weights.
(iv)  Typically, the interpretation based on the two matrices will be similar.

a) Oblimin: Tends to produce varimax-looking factors, but which are oblique.
Delta is a parameter that "controls" the extent of obliqueness amongst the factors.
1) Negative values "decrease" factor correlations

i) "0" is the default
ii1) Positive values (don't go over .8) "permit" additional factor correlation
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Table 4.19: Total Variance Explained for Oblimin

Component Initial Eigenvalues Rotation Sums of
Squared Loadings
Total % Cum %
Var Total
1 2.3774 | 59.4342 | 59.4342 2.1746
2 1.1941 | 29.8529 | 89.2871 1.5830
3 0.2921 | 7.3021 | 96.5892
4 0.1364 | 3.4108 100

From Table 4.19, the last part titled: “Rotated Sums of Squared Loadings™ gives the
information for extracted components after rotation. Note that after rotation, only the
relative value of eigenvalues has changed, the cumulative percentage remains the
same.

The first principal component (scaled eigenvector) which explains the largest part of
the total variance has a variance (eigenvalue) of 2.17. The second principal
component has a variance 1.58. The first two principal components account for
89.29% of the total variance.

Note that after rotation only the relative value of eigenvalues has changed, the
cumulative percentage remains the same.

Table 4.20: Pattern Matrix for Oblimin

Component
1 2
RH -0.9455 | 0.2561
Solar Rad 0.8683 | 0.1609
Temp 0.6322 | 0.6139
WS -0.0974 | 0.9883

From Table 4.20, this pattern matrix is related to correlating matrix in orthogonal
rotation. In component 1, there is a large inverse relation of RH and good proportion
loadings of solar radiation and temperature. Component 2 has high loadings of
temperature and RH.
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The rotated component for the Oblimin rotation represents both how the variables are
weighted for each factor and the correlation between the variables and the
components. Based on these components magnitude of the coefficients, it can be said
that the first component represents dry season, and the second component represents
rainy season. Because of the complex loadings of temperature, the place has high
temperature throughout the years.

Table 4.21 Structure Matrix for Oblimin

Component

1 2
RH -0.8988 0.0833
Solar Rad 0.8977 0.3196
Temp 0.7444 0.7294
WS 0.0832 0.9705

Table 4.21 indicates that the structure matrix holds the correlations between each
variable and each factor (same as with orthogonal rotations) gives the components
loadings after the rotation was carried out. For each of the variables, we get a loading
in each of the columns representing factors. The variables are listed in the decreasing
order of factor loadings as we requested the same in the Options window.

In component 1, there is a large inverse relation of RH and good proportion loadings
of solar radiation and temperature. This is typical of the dry season. Component 2 has
high loadings of temperature and wind speed and, by the nature of this place this is
not typical of rainy season. Because of the complex loadings of temperature, the place
has high temperature throughout the years.

Table 4.22: Component Correlation Matrix for Oblimin
Component 1 2
1| 0.1827
2 0.1827 1

Table 4.22 shows the component transformation matrix. This is used to see whether
the rotation technique is suitable or not. Usually, a suitable rotation technique will
result in a nearly symmetrical off-diagonal which is realized in this case.
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Table 4.23: Component Score Coefficient Matrix (Eigen Vectors) for Oblimin

Component

1 2
Solar Rad 0.4169 0.0567
RH -0.4818 0.2403
Temp 0.2715 0.3892
WS -0.1117 0.6985

Table 4.23 shows the eigenvectors of the two eigenvalues displayed in the Table. The
values represent the coefficient of the basis vectors or weights of the variable.

b) Promax
Table 4.24: Total Variance Explained for Promax

Component Initial Eigenvalues Rotation Sums of
Squared Loadings
Total % of Cumulative Total
Variance %
1 2.3774 59.4342 59.4342 22111
2 1.1941 29.8529 89.2871 1.7005
3 0.2921 7.3021 96.5892
4 0.1364 3.4108 100

From Table 4.24 the last part titled: “Rotated Sums of Squared Loadings” gives the
information for extracted components after rotation.

The first principal component (scaled eigenvector), which explains the largest part of
the total variance, has a variance (eigenvalue) of 2.21. The second principal
component has a variance 1.70. The first two principal components account for
89.29% of the total variance.

Note that after rotation only the relative value of eigenvalues has changed as the
cumulative percentage remains the same.
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Table 4.25: Pattern Matrix for Promax

Component

1 2
RH -0.9861 | 0.3061
Solar Rad 0.8627 | 0.1267
WS -0.2057 | 1.0220
Temp 0.5743 | 0.6037

From Table 4.25, the pattern matrix holds the beta weights to reproduce variable
scores from factor scores. After performing the oblique rotation, we obtain the
correlation structure, in which we find that the first component has strong correlations
with the three physical variables, Solar radiation, temperature and RH, and a weak
correlation with wind speed, and the second component has strong correlations with
wind speed and temperature.

The rotated component for the Promax rotation shows how the variables are weighted
for each factor and the correlation between the variables, and the components. Based
on these components loadings, it can be said that the first component represents dry
season, and the second component represents rainy season. Because of the complex
loadings of temperature, the place has high temperature throughout the years.

Table 4.26: Structure Matrix for Promax

Component
1 2
Solar Rad 0.9036 0.4053
RH -0.8872 -0.0124
WS 0.1244 0.9556
Temp 0.7693 0.7892

Table 4.26 shows that the structure matrix holds the correlations between each
variable and each factor (same as with orthogonal rotations) gives the components
loadings after the rotation was carried out. For each of the variables, we get a loading
in each of the columns representing factors.

After performing the oblique rotation we obtain the correlation structure, in which we
find that the first component has strong correlations with the three physical variables
(Solar radiation, temperature and RH), and a weak correlation with wind speed, and
the second component has strong correlations with wind speed and temperature.
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The rotated component for the Promax rotation shows how the variables are weighted
for each factor and the correlation between the variables, and the components. Based
on these components loadings, it can be said that the first component represents dry
season, and the second component represents rainy season. Because of the complex
loadings of temperature, the place has high temperature throughout the years.

Table 4.27: Component Correlation Matrix for Promax

Component 1 2
1 0.3230
2 0.3230 1

Table 4.27 shows the component transformation matrix. This is used to see whether
the rotation technique is suitable or not. Usually, a suitable rotation technique will
result in a nearly symmetrical off-diagonal which is realized in this case.

Table 4.28: Component Score Coefficient Matrix (Eigen Vectors) for Promax

Component

1 2
Solar Rad 0.4157 | 0.0987
RH -0.4671 | 0.1843
Temp 0.2859 | 0.4080
WS -0.0805 | 0.6699

Table 4.28 shows the eigenvectors of the two eigenvalues. The values represent the
coefficient of the basis vectors or weights of the variables.

CONCLUSION

Based on the observations of all the component matrices, structure matrices and
pattern matrices, it can be concluded that the area has two seasons: dry and rainy
seasons. Based on the eigenvalues, it shows that dry season is longer than the rainy
season, and this is typical to the area that has seven (7) months (58.3%) for the dry
season and five (5) (41.7%) months for the rainy season. The complex loadings of
temperature in the two components show that the area is very warm.

Based on the component transformation matrices for the orthogonal rotations and
components correlation matrices for oblique rotation, it is clear that oblimin and
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promax are the most suitable rotations, due to the symmetry of the off-diagonal
elements.
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